POTENTIOMETER TRANSDUCER

RTP2

Use

Replaces the input of mechanical displacement of an angle or a position with resistance value change, then insulates and converts it into a proportional DC signal.

Features

1. Constant voltage/current output.

RTP2-ZF2
$(80 \times 50 \times 121 \mathrm{~mm} / 450 \mathrm{~g})$
2. Can cope with resistance range $100 \Omega-10 \mathrm{k} \Omega$ of a potentiometer. (RTP2-Z type)
3. Withstand voltage between input, output, auxiliary supply and earth is AC 2 , $000 \mathrm{~V}(50 / 60 \mathrm{~Hz})$, complete insulation for 1 minute.
4. Impulse withstands voltage $5 \mathrm{kV}, 1.2 / 50 \mu \mathrm{~s}$ (between electric circuit and outer case), and positive/negative polarity 3 times each is guaranteed.
5. With output line surge protection. ($2,000 \mathrm{~A}, 8 / 20 \mu \mathrm{~s}$, positive/negative polarity), can transmit an output directly to a distant place.

- Connection diagram

Specification

Normal total resistance	Input (specified current)	External resistance	Output (load resistance)	Auxiliary supply	$\begin{gathered} \text { Common } \\ \text { specification } \\ \hline \end{gathered}$
$50 \Omega * 1$	A $: 0-50 \Omega(5 \mathrm{~mA})$	$\leqq 5 \Omega / 1 \mathrm{line}$		1: $\mathrm{AC} 100 \mathrm{~V} \pm 10 \%$, $50 / 60 \mathrm{~Hz}$ 2: $\mathrm{AC} 110 \mathrm{~V} \pm 10 \%$, $50 / 60 \mathrm{~Hz}$ 3: AC200V $\pm 10 \%$, $50 / 60 \mathrm{~Hz}$ 4: $\mathrm{AC} 220 \mathrm{~V} \pm 10 \%$, $50 / 60 \mathrm{~Hz}$ 5: DC24V $\pm 10 \%$ 6: DC48V $\pm 10 \%$ 0): other than those above	Tolerance: $\pm 0.5 \%$ Response time: $\leqq 1 \text { sec. } / 99 \%$ Consumption VA: AC power source:3.5VA DC power source: 4 W Weight: AC power source: 450 g DC power source:300g
80Ω *1	B $: 0-80 \Omega(5 \mathrm{~mA})$	$\leqq 8 \Omega / 1 \mathrm{line}$			
100Ω *1	Z $: 100 \Omega-10 \mathrm{k} \Omega$ Any potentiometer of range $100 \Omega-10 \mathrm{k} \Omega$ can be used under the following adjustment range.	-			
135Ω *1					
200Ω *1					
400Ω *1	0 :other than those above	-			
$500 \Omega * 1$					
$1 \mathrm{k} \Omega \quad{ }^{1}$					
$2 \mathrm{k} \Omega{ }^{*} 1$					
$3 \mathrm{k} \Omega \quad{ }^{*} 1$					
$5 \mathrm{k} \Omega \quad{ }^{1}$					
$10 \mathrm{k} \Omega \quad{ }^{\text {\% }}$					
-					

-Open of current output: even if the current output terminal is used in a state of regular open, there is no problem. Also, a voltage of approx. 25 V occurs on the output terminal.
*1.Variable range of BIAS MAX for the following potentiometers are assumed to be $\pm 15 \%$: $50 \Omega, 80 \Omega, 100 \Omega, 200 \Omega, 400 \Omega, 500 \Omega, 1 \mathrm{k} \Omega, 2 \mathrm{k} \Omega, 3 \mathrm{k} \Omega, 5 \mathrm{k} \Omega, 10 \mathrm{k} \Omega$.

-Adjustment range of output signal

Specify the actual use range and the normal resistance value of a potentiometer in the case of use range other than those above.

Input form	BIAS adjustment range: $0-50 \%$ of input span
Z	(can be changed from the front of converter.)
	MAX adjustment range: $50-100 \%$ of input span
	(can be changed from the front of converter.)

(1)BIAS $\cdots \cdots 0 \%$, MAX. $\cdots \cdots 100 \%$ Standard
(2)BIAS $\cdots \cdots 0 \%$, MAX. $\cdots \cdots 50 \%$
(3)BIAS $\cdots \cdots 50 \%$, MAX. $\cdots \cdots 50 \%$ (parallel shift of (2))
(4)BIAS $\cdots \cdots 50 \%$, MAX. $\cdots \cdots 100 \%$ (parallel shift of (1))
*Being within $0-50 \%$ of input value is sufficient for adjusting the output value to 0%.

Purchase specifications

- Block diagram (RTP2-Z type) Those other than Z type are of constant current method.

(1)Low-drift voltage amplifying circuit
(2)Pulse width modulation circuit
(3)Pulse width demodulation circuit
(4) Output circuit
(5) Output line surge protection circuit
(6)Insulated power source circuit
- Because this device is potential-free type, product is shipped in input of $0-10 \mathrm{k} \Omega$ /output of graph (1) (standard) above.
Notes: this device can not be used with a 2 -wire potentiometer.

